Mapas Autoorganizados (SOM)

 

Self-Organizing Maps (SOM) – Mapas Autoorganizados (SOM)

 

Los Self-Organizing Maps (SOM), también conocidos como mapas de Kohonen

 

Son un tipo de red neuronal no supervisada.

 

Utilizada para reducir la dimensionalidad.

 

yPara la visualización de datos de alta dimensión.

 

Introducidos por Teuvo Kohonen en la década de 1980.

 

Proyectan datos complejos en un espacio de menor dimensión.

 

En una rejilla bidimensional.

 

Preservando las relaciones topológicas.

 

De los datos originales.

 

Características Principales de Mapas Autoorganizados (SOM)

 

Red neuronal no supervisada

 

SOM no requiere etiquetas para los datos de entrada.

 

Su objetivo es identificar patrones intrínsecos.

 

Estructuras dentro de los datos.

 

Proyección dimensional

 

Reduce datos de alta dimensión a un mapa bidimensional.

 

De menor dimensión facilita su visualización y análisis.

 

Preservación de topología

 

Los datos similares en el espacio de entrada.

 

Se mapean en regiones cercanas del espacio reducido.

 

Aprendizaje competitivo

 

Las neuronas compiten entre sí para representar los datos.

 

Resulta en una especialización de ciertas neuronas.

 

Para ciertas regiones del espacio de entrada.

 

Estructura de un SOM

 

Capa de entrada

 

Cada nodo en esta capa representa un vector.

 

De características de los datos.

 

Capa de mapa

 

Consiste en una cuadrícula de nodos (neuronas).

 

Cada nodo tiene un peso asociado.

 

Es un vector de la misma dimensión.

 

Que los datos de entrada.

 

Pesos

 

Los pesos conectan la capa de entrada.

 

Con la capa del mapa.

 

Se ajustan durante el entrenamiento.

 

Aproximar los datos de entrada.

 

Proceso de Entrenamiento

 

El entrenamiento de un SOM implica los siguientes pasos principales.

 

Inicialización

 

Los pesos de las neuronas se inicializan de forma aleatoria.

 

Basándose en una distribución uniforme.

 

Dentro del rango de los datos.

 

Competencia

 

Para cada vector de entrada.

 

Se calcula la distancia entre el vector de entrada.

 

Los pesos de todas las neuronas.

 

Se selecciona la neurona ganadora (Best Matching Unit, BMU)

 

Es la más cercana al vector de entrada.

 

Actualización

 

Los pesos de la neurona ganadora.

 

Sus vecinas se ajustan para acercarse al vector de entrada.

 

La cantidad de ajuste depende de una función de vecindad.

 

Decrece con la distancia a la neurona ganadora y con el tiempo.

 

Repetición

 

El proceso se repite para múltiples iteraciones.

 

Todos los vectores de entrada.

 

Con una tasa de aprendizaje que disminuye gradualmente.

 

Ecuaciones Clave

 

 

Aplicaciones de SOM

 

Reducción de dimensionalidad

 

Ayuda a visualizar datos de alta dimensión.

 

En un espacio bidimensional.

 

Segmentación de datos

 

Agrupa datos similares en clústeres.

 

Útil para análisis de mercados, segmentación de clientes, etc.

 

Clasificación

 

Proporciona una forma visual de asignar etiquetas a datos en clústeres.

 

Detección de anomalías

 

Identifica datos que no se ajustan bien a los patrones del mapa.

 

Bioinformática

 

Análisis de datos genómicos o proteómicos.

 

Procesamiento de imágenes

 

Análisis de patrones en imágenes y reducción de ruido.

 

Ventajas

 

No supervisado

 

No requiere etiquetas

 

Lo hace útil para problemas exploratorios.

 

Visualización intuitiva

 

Proporciona representaciones bidimensionales claras.

 

De datos complejos.

 

Preservación de relaciones topológicas

 

Garantiza que los datos similares permanezcan cercanos en el mapa.

 

Adaptabilidad

 

Puede ajustarse para diferentes tipos de datos y aplicaciones.

 

Desventajas

 

Dificultad en la interpretación

 

Los resultados pueden ser difíciles de interpretar.

 

Sin conocimientos específicos.

 

Escalabilidad

 

El tiempo de entrenamiento aumenta.

 

Con grandes conjuntos de datos.

 

Sensibilidad a hiperparámetros

 

Los resultados dependen en gran medida de la tasa de aprendizaje.

 

La función de vecindad y el tamaño del mapa.

 

No garantiza óptimos globales

 

Como muchas técnicas de aprendizaje.

 

Puede quedarse atrapado en óptimos locales.

 

Ejemplo Práctico

 

Datos

 

Supongamos un conjunto de datos de clientes.

 

Con atributos como edad, ingreso y gasto mensual.

 

Uso de SOM

 

Entrenamos un SOM para proyectar estos datos.

 

En un mapa bidimensional.

 

Resultado

 

El mapa muestra regiones donde los clientes se agrupan.

 

Según características similares.

 

Ingresos altos o bajo gasto.

 

Los mapas autoorganizados son herramientas para el análisis exploratorio de datos.

 

La reducción de dimensionalidad y la agrupación no supervisada.

 

Su capacidad para preservar la estructura topológica.

 

Hace que sean ideales para representar relaciones complejas.

 

En conjuntos de datos de alta dimensión.

 

Requieren ajustes y experiencia para su implementación efectiva.

 

 

Te puede interesar;

Curso de ChatGPT (GRATIS)

 

Manu Duque Soy Yo

¡Hola google! hay un pequeño problema de naming, nombre de marca ó marca personal, llámalo como quieras. Resulta que para el nombre de marca: «Manu Duque», aparecen resultados en las SERPs que no corresponden exactamente

Leer más »